With increasing global attention on carbon emissions management, Life Cycle Assessment (LCA) databases have become a crucial tool for companies and governments in formulating environmental policies. These databases not only track the carbon footprint of products but also encompass multiple resource and environmental indicators, facilitating sustainable economic development.
1. Differences in Indicators
Carbon footprint databases primarily focus on recording and analyzing greenhouse gas emissions, centering around carbon-related assessments. In contrast, LCA databases include a broader range of resource and environmental indicators, enabling a comprehensive evaluation of the environmental impact of a product throughout its life cycle.
For example, the European Union’s Product Environmental Footprint (PEF) requires the assessment of 16 different resource and environmental indicators, covering aspects from energy usage to resource consumption. In Asia and global supply chains (such as Target and the Higg Index), LCA databases are increasingly adopted to comply with policy demands. Additionally, various “carbon reduction and pollution control” policies require LCA methods and databases to fully manage environmental impacts.
2. Differences Between Unit Process Datasets and Aggregated Result Datasets
LCA databases are primarily divided into two types: unit process datasets and aggregated result datasets.
Unit process datasets are collected through detailed surveys and data gathering, recording the specifics of each phase in a product’s life cycle, such as energy consumption and raw material usage. However, these unit process datasets must be linked to upstream background databases to form a complete life cycle model, which then produces aggregated result datasets. For example, unit process datasets for steel production need to connect to data from the U.S., Europe, China, Japan, or other regions concerning electricity, coal, and materials to provide a comprehensive and accurate result.
Aggregated result datasets are the outcomes calculated based on a complete life cycle model. Only when the unit process datasets are fully integrated with background databases and the entire life cycle model is established can the aggregated results be obtained. These results include carbon footprints and other environmental indicators, which are used to assess the environmental impact of products from raw material extraction, production, usage, and disposal.
In other words, unit process datasets alone are insufficient; they must be combined with background databases to generate a complete life cycle model and produce credible LCA results.
3. The Critical Role of Background Databases
The core of any LCA database is its background database. A background database contains thousands of unit process datasets, covering various basic energy and raw material production processes. Each unit process dataset can trace upstream stages and, when integrated with professional software, form a complete life cycle model.
These datasets provide detailed carbon footprints and other environmental indicators, such as raw material extraction and energy consumption, and generate thousands of aggregated result datasets. In other words, a background database must have a comprehensive life cycle process to support downstream products and supply chains in establishing full life cycle models and obtaining accurate LCA results.
Without using these background databases, any product life cycle model would be incomplete, resulting in an underestimation of the carbon footprint and environmental impact, or even leading to misleading or inaccurate data.
4. Applications of LCA Background Databases Worldwide
LCA databases are widely used around the world, and databases from different regions and countries offer valuable resources for life cycle assessments in various industries:
Europe: Europe’s ecoinvent database is one of the most well-known LCA databases. Many European companies use it to calculate the carbon footprint and environmental indicators of products, from food and construction materials to electronics. Particularly within the EU’s PEF framework, companies rely on ecoinvent to meet stringent environmental compliance requirements.
USA and Germany: The GaBi database is extensively used in industrial sectors, especially in automotive, energy, and chemical industries. Many companies in the U.S. and Germany use GaBi to assess their products’ environmental impact in global markets and improve the environmental performance of their supply chains through LCA databases.
Japan: Japan’s IDEA database focuses on the Asian market, particularly with data on domestic energy and raw materials. It supports Japan’s manufacturing industries, especially in electronics, automotive, and materials sectors, by providing rich LCA data to help these industries achieve higher environmental standards.
Asia: As environmental awareness grows in Asia, LCA databases are gradually developing in the region. For example, China’s Life Cycle Basic Database (CLCD) has become an essential resource in promoting carbon reduction and pollution control. CLCD offers comprehensive local energy and raw material data, supporting precise environmental assessments for various industries. It also connects with other global databases, enhancing its competitiveness in the global market.
5. Application of LCA Databases in Asia
In Asia, LCA databases are increasingly becoming a vital tool for companies to manage their carbon emissions. By leveraging these databases, businesses can accurately trace the carbon footprint data of each stage in their product supply chain, enabling them to develop effective carbon reduction strategies and establish more industry-specific databases.
In conclusion, building and refining background databases are key to enabling companies to perform accurate life cycle assessments and environmental management. This not only enhances the competitiveness of products in the global market but also helps drive the green transition and sustainable development throughout Asia.
Author of this article : SSBTi.org
生命週期評估 (LCA) 資料庫與基礎數據庫簡介
隨著全球對碳排放管理的關注不斷增加,LCA(生命週期評估)資料庫成為企業和政府制定環保政策的關鍵工具。它不僅能夠追蹤產品的碳足跡,還涵蓋了多種資源與環境指標,幫助實現更可持續的經濟發展。
1. 指標內容的差別
碳足跡資料庫主要針對溫室氣體的排放進行記錄與分析,專注於碳排放的評估。然而,LCA 資料庫則包含更多元的資源與環境指標,能夠全方位評估產品在其生命週期中對環境的影響。例如,歐盟的產品環境足跡 (PEF) 要求評估 16 種資源與環境指標,涵蓋從能源使用到資源消耗等多方面。亞洲地區和全球供應鏈(例如Target,Higgs),也逐步採用 LCA 資料庫來配合政策需求;各種“降碳減污協同” 政策,也都需要運用 LCA 方法和資料庫來全面管理環境影響。
2. 單元過程數據集與匯總結果數據集的區別
LCA 資料庫中的數據集主要分為兩類:單元過程數據集與匯總結果數據集。單元過程數據集是通過詳細調查和數據收集得到的,記錄了產品生命週期中每個階段的具體過程數據,如能源使用、原材料消耗等。然而,這些單元過程數據集必須連接到上游的基礎數據庫,才能構成一個完整的生命週期模型,從而得出匯總結果數據集(例如生產鋼鐵的單元過程數據,進一步連接到美國、歐洲、大陸、日本等不同生產地的電、媒、材料的數據庫,匯總數據後的結果不同,而且整個模型才算完整)。
匯總結果數據集則是基於完整的生命週期模型所計算出的結果。只有在單元過程數據集與基礎數據庫完整連接,並建立了全流程模型後,才能得到這些匯總結果,這些結果包括碳足跡和其他環境指標。這些數據集可用來評估產品從原材料開採、生產、使用到廢棄處理的整個過程中對環境的影響。
換句話說,只有單元過程數據集是不夠的,必須與基礎數據庫結合,才能生成完整的生命週期模型,並得出可信的 LCA 評估結果。
3. 基礎數據庫的關鍵作用
LCA 資料庫的核心在於其基礎數據庫。基礎數據庫包含了數以千計的單元過程數據集,這些數據集涵蓋了各種基礎能源與原材料的生產過程。每個單元過程數據集都可以追溯上游各個環節,並且通過專業軟件建立完整的生命週期模型。
這些數據集提供了詳細的碳足跡和其他環境指標,例如原材料開採、能源消耗等,並形成了數以千計的匯總結果數據集。換句話說,基礎數據庫需要自身的生命週期過程是完整的,才能有效支持後續產品的全生命週期分析。若無法使用這些基礎數據庫,任何產品的生命週期模型都無法準確反映其真實的環境影響,碳足跡數據會有所低估,甚至可能被誤導為不完整或虛假數據。
4. 全球 LCA 基礎數據庫的應用
LCA 資料庫在世界各地廣泛應用,不同國家和地區的資料庫提供了寶貴的資源支持各行業的生命週期評估:
歐洲:歐洲的 ecoinvent 資料庫是目前最知名的 LCA 資料庫之一。許多歐洲企業使用該資料庫來計算產品的碳足跡和其他環境指標,從食品、建築材料到電子產品等,覆蓋了多個行業。特別是在歐盟的產品環境足跡(PEF)框架下,許多企業利用 ecoinvent 來滿足嚴格的環境合規要求。
美國與德國:GaBi 資料庫廣泛應用於工業領域,特別是在汽車、能源和化學品行業。許多美國和德國的企業使用 GaBi 來分析其產品在全球市場中的環境影響,並透過 LCA 資料庫來改進供應鏈中的環境績效。
日本:日本的 IDEA 資料庫專注於亞洲市場,特別是針對日本國內的能源與原材料數據。它為日本的製造業,尤其是電子、汽車和材料工業,提供了豐富的 LCA 數據支持,幫助這些產業實現更高的環保標準。
亞洲:隨著亞洲地區環保意識的提高,當地的 LCA 資料庫也逐步發展。例如,中國的生命週期基礎資料庫 (CLCD) 已經成為亞洲地區推動減碳與污染減排的重要資源。CLCD 提供了豐富的本地能源與原材料數據,支援各行業進行精確的環境影響評估,並與其他全球資料庫相互聯繫,提升其在全球市場中的競爭力。
5. 將 LCA 資料庫應用於亞洲
在亞洲地區,LCA 資料庫的應用正逐漸成為企業管理碳排放的重要工具。企業能夠透過這些資料庫,精確追溯產品供應鏈中每一階段的碳足跡數據,從而制定有效的減碳策略並建立更多行業專屬的資料庫。
總而言之,建立和完善基礎數據庫是企業進行生命週期評估及環境管理的關鍵。這不僅能提升產品在全球市場中的競爭力,還能幫助推動整個亞洲地區的綠色轉型和可持續發展。(完)
本文作者 : SSBTi.org
Comments